

MOS INTEGRATED CIRCUIT μ PD44323362

32M-BIT CMOS SYNCHRONOUS FAST STATIC RAM 1M-WORD BY 36-BIT HSTL INTERFACE / REGISTER-REGISTER / LATE WRITE

Description

The μ PD44323362 is a 1,048,576 words by 36 bits synchronous static RAM fabricated with advanced CMOS technology using Full-CMOS six-transistor memory cell.

The μ PD44323362 is suitable for applications which require high-speed, low voltage, high-density memory and wide bit configuration, such as cache and buffer memory.

The μ PD44323362 is packaged in a 119-pin PLASTIC BGA (Ball Grid Array).

Features

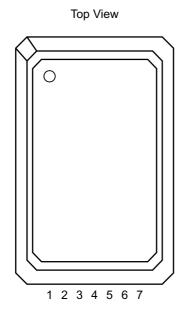
- Fully synchronous operation
- HSTL Input / Output levels
- Fast clock access time: 2.0 ns / 250 MHz
- Asynchronous output enable control: /G
- Byte write control: /SBa (DQa1 to DQa9), /SBb (DQb1 to DQb9), /SBc (DQc1 to DQc9), /SBd (DQd1 to DQd9)
- Common I/O using three-state outputs
- Internally self-timed write cycle
- Late write with 1 dead cycle between Read-Write
- User-configurable outputs: Controlled impedance outputs or push-pull outputs
- Boundary scan (JTAG) IEEE 1149.1 compatible
- \bullet 2.5 \pm 0.125 V (Chip) / 1.4 to 1.9 V (I/O) supply
- 119 bump BGA package, 1.27 mm pitch, 14 mm × 22 mm
- Sleep mode: ZZ (Enables sleep mode, active high)

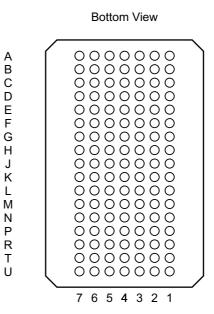
★ Ordering Information

Part number	Access time	Clock frequency	Package
μPD44323362F1-C40-FJ1	2.0 ns	250 MHz	119-pin PLASTIC BGA

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.




Pin Configuration

/xxx indicates active low signal.

119-pin plastic BGA

Α В С D Ε F G Н J Κ L Μ Ν Ρ R T U

5

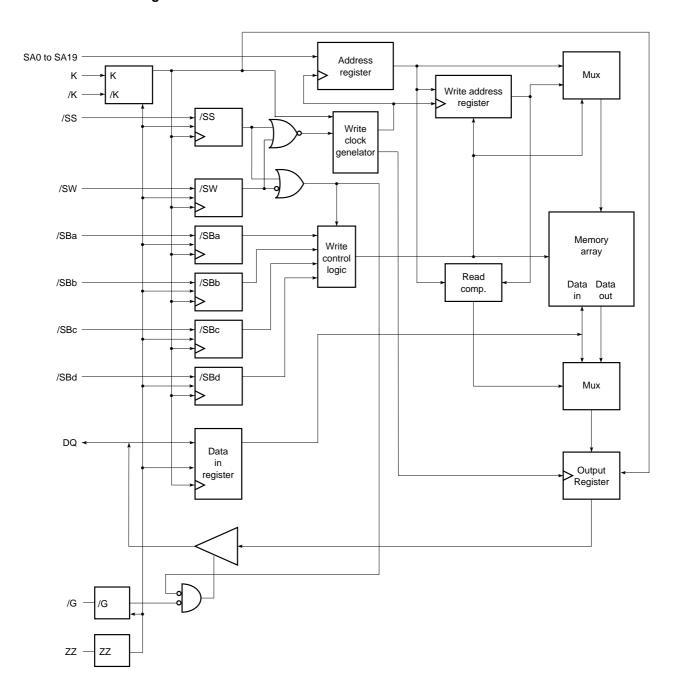
1	2	3	4	5	6	7
V _{DD} Q	SA12	SA9	NC	SA5	SA2	V _{DD} Q
NC	SA18	SA16	SA19	SA15	SA17	NC
NC	SA13	SA10	V _{DD}	SA6	SA3	NC
DQc8	DQc9	Vss	ZQ	Vss	DQb9	DQb8
DQc6	DQc7	Vss	/SS	Vss	DQb7	DQb6
V _{DD} Q	DQc5	Vss	/G	Vss	DQb5	V _{DD} Q
DQc3	DQc4	/SBc	NC	/SBb	DQb4	DQb3
DQc1	DQc2	Vss	NC	Vss	DQb2	DQb1
V _{DD} Q	V _{DD}	V _{REF}	V _{DD}	V _{REF}	V _{DD}	V _{DD} Q
DQd1	DQd2	Vss	K	Vss	DQa2	DQa1
DQd3	DQd4	/SBd	/K	/SBa	DQa4	DQa3
V _{DD} Q	DQd5	Vss	/SW	Vss	DQa5	V _{DD} Q
DQd6	DQd7	Vss	SA0	Vss	DQa7	DQa6
DQd8	DQd9	Vss	SA1	Vss	DQa9	DQa8
NC	SA14	M1	V _{DD}	M2	SA4	NC
NC	NC	SA11	SA8	SA7	NC	ZZ
VddQ	TMS	TDI	TCK	TDO	NC	V _{DD} Q

	U		-	0		
V _{DD} Q	SA2	SA5	NC	SA9	SA12	V _{DD} Q
NC	SA17	SA15	SA19	SA16	SA18	NC
NC	SA3	SA6	V _{DD}	SA10	SA13	NC
DQb8	DQb9	Vss	ZQ	Vss	DQc9	DQc8
DQb6	DQb7	Vss	/SS	Vss	DQc7	DQc6
V _{DD} Q	DQb5	Vss	/G	Vss	DQc5	V _{DD} Q
DQb3	DQb4	/SBb	NC	/SBc	DQc4	DQc3
DQb1	DQb2	Vss	NC	Vss	DQc2	DQc1
V _{DD} Q	V _{DD}	VREF	V _{DD}	VREF	V _{DD}	V _{DD} Q
DQa1	DQa2	Vss	K	Vss	DQd2	DQd1
DQa3	DQa4	/SBa	/K	/SBd	DQd4	DQd3
$V_{DD}Q$	DQa5	Vss	/SW	Vss	DQd5	V _{DD} Q
DQa6	DQa7	Vss	SA0	Vss	DQd7	DQd6
DQa8	DQa9	Vss	SA1	Vss	DQd9	DQd8
NC	SA4	M2	V _{DD}	M1	SA14	NC
ZZ	NC	SA7	SA8	SA11	NC	NC
V _{DD} Q	NC	TDO	TCK	TDI	TMS	V _{DD} Q

3

2

Pin Name and Functions


Pin name	Description	Function
V _{DD}	Core Power Supply	Supplies power for RAM core
Vss	Ground	
V _{DD} Q	Output Power Supply	Supplies power for output buffers
V _{REF}	Input Reference	
K, /K	Main Clock	
SA0 to SA19	Synchronous Address Input	
DQa1 to DQd9	Synchronous Data Input / Output	
/SS	Synchronous Chip Select	Logically selects SRAM
/SW	Synchronous Byte Write Enable	Write command
/SBa	Synchronous Byte "a" Write Enable	Write DQa1 to DQa9
/SBb	Synchronous Byte "b" Write Enable	Write DQb1 to DQb9
/SBc	Synchronous Byte "c" Write Enable	Write DQc1 to DQc9
/SBd	Synchronous Byte "d" Write Enable	Write DQd1 to DQd9
/G	Asynchronous Output Enable	Asynchronous input
ZZ	Asynchronous Sleep Mode	Enables sleep mode, active high
ZQ	Output Impedance Control	
M1, M2	Mode Select	Selects operation mode Note
NC	No Connection	
TMS	Test Mode Select (JTAG)	
TDI	Test Data Input (JTAG)	
TCK	Test Clock Input (JTAG)	
TDO	Test Data Output (JTAG)	

Note This device only supports Single Differential Clock, R/R Mode.

(R/R stands for Registered Input / Registered Output.)

Late Write Block Diagram

Programmable Impedance / Power Up Requirements

An external resistor, RQ, must be connected between the ZQ pin on the SRAM and Vss to allow for the SRAM to adjust its output driver impedance. The value of RQ must be 5X the value of the intended line impedance driven by the SRAM. The allowable range of RQ to guarantee impedance matching with a tolerance of 15% is between 175 ohm and 350 ohm. Periodic readjustment of the output driver impedance is necessary as the impedance is greatly affected by drifts in supply voltage and temperature. The impedance update of the output driver occurs only when the SRAM is in high impedance. Write and Deselect operations will synchronously switch the SRAM into and out of high impedance, therefore, triggering an update. Power up requirements for the SRAM are that VDD must be powered before or simultaneously with VDDQ followed by VREF; inputs should be powered last. The limitation on VDDQ is that it must not exceed VDD during power up. In order to guarantee the optimum internally regulated supply voltage, the SRAM requires 4096 clock cycles of power-up time after VDD reaches its operating range. And CID impedance is not updated during the clock stopped.

Sleep Mode

Sleep Mode is enabled by switching asynchronous signal ZZ High. When the SRAM is in Sleep Mode, the output will go to a high impedance state and the SRAM will draw standby current. SRAM data will be preserved and a recovery time (tzzr) is required before the SRAM resumes normal operation. And CID impedance is not updated during the sleep mode.

Synchronous Truth Table

ZZ	/SS	/SW	/SBa	/SBb	/SBc	/SBd	Mode	DQa1 to DQa9	DQb1 to DQb9	DQc1 to DQc9	DQd1 to DQd9	Power
L	Н	×	×	×	×	×	Not selected	High-Z	High-Z	High-Z	High-Z	Active
L	L	Н	×	×	×	×	Read	Dout	Dout	Dout	Dout	Active
L	L	L	L	L	L	L	Write	Din	Din	Din	Din	Active
L	L	L	L	Н	Н	Η	Write	Din	High-Z	High-Z	High-Z	Active
L	L	L	Н	L	L	L	Write	High-Z	Din	Din	Din	Active
Н	×	×	×	×	×	×	Sleep Mode	High-Z	High-Z	High-Z	High-Z	Standby

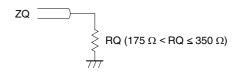
Remark ×: Don't care

Output Enable Truth Table

Mode	/G	DQ
Read	L	Dout
Read	Н	High-Z
Sleep (ZZ = H)	×	High-Z
Write (/SW = L)	×	High-Z
Deselect (/SS = H)	×	High-Z

Mode Select (I/O) Note 1

M1	M2	Mode
Vss	V _{DD}	Single Differential Clock (K, /K), R/R Mode Note 2


Notes 1. This device only supports Single Differential Clock, R/R Mode. Mode Select Pins (M1, M2) are to be tied to either VDD or Vss.

2. R/R: Registered Input / Registered Output

Mode Select (Output Buffer)

ZQ	Mode	Note
$IZQ \times RQ$	Controlled impedance push-pull output buffer mode	1
V _{DD}	Push-pull output buffer mode	2

Notes 1. See figure.

2. See figure.

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	Note
Supply voltage	V _{DD}		-0.5		+3.0	٧	1
Output supply voltage	V _{DD} Q		-0.5		+3.0	٧	1
Input voltage	Vin		-0.5		V _{DD} + 0.3 (3.0 V MAX)	>	1
Input / Output voltage	V _{I/O}		-0.5		V _{DD} + 0.3 (3.0 V MAX)		1
Junction temperature	Tj		5		110	°C	
Storage temperature	Tstg		– 55		+125	°C	

Note 1. -1.0 V MIN. (Pulse width 10% Tcyc)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions (Tj = 5 to 110 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Core supply voltage	V _{DD}		2.375	2.5	2.625	٧
Output buffer supply voltage	V _{DD} Q		1.4		1.9	٧
Input reference voltage	VREF		0.68		0.95	٧
Low level input voltage	VIL		-0.3 Note		V _{REF} – 0.1	V
High level input voltage	VIH		V _{REF} + 0.1		V _{DD} Q + 0.3	٧

Note -1.0 V MIN. (Pulse width 10% Tcyc)

Recommended AC Operating Conditions (Tj = 5 to 110 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input reference voltage	VREF (RMS)		-5%		+5%	٧
Low level input voltage	VIL		-0.3		V _{REF} – 0.2	٧
High level input voltage	ViH		V _{REF} + 0.2		V _{DD} Q + 0.3	٧

Capacitance (T_A Note = 25 °C, f = 1 MHz)

Parameter Note	Symbol	Test conditions	MAX.	Unit
Input capacitance	Cin	V _{IN} = 0 V	6	pF
Input / Output capacitance	C _{I/O}	V ₁ 0 = 0 V	7	pF
Clock input capacitance	Cclk	V _{cik} = 0 V	7	pF

Note T_A = Operating ambient temperature

Remark These parameters are sampled and not 100% tested.

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current	lu	V _{IN} = 0 to V _{DD}	– 5		+5	μΑ
DQ leakage current	llo	$V_{I/O} = 0$ to $V_{DD}Q$, $/SS = V_{IH}$ or $/G = V_{IH}$	– 5		+5	μΑ
Operating supply current	Icc	V _{IN} = V _{IH} or V _{IL} , /SS = V _{IL} , ZZ = V _{IL} ,			550	mA
		cycle = 250 MHz, IDQ = 0 mA				
Quiescent active power	Icc2	$V_{IN} = V_{IH}$ or V_{IL} , /SS = V_{IL} , ZZ = V_{IL} ,			250	mA
supply current		Cycle = 4 MHz, IDQ = 0 mA				
Sleep mode power supply	Isbzz	ZZ = V _{IH} , All other inputs = V _{IH} or V _{IL} ,			150	mA
current		Cycle = DC, IDQ = 0 mA				
Power supply standby	Isbss	$V_{IN} = V_{IH}$ or V_{IL} , /SS = V_{IH} , ZZ = V_{IL} ,			300	mA
current		Cycle = 250 MHz, IDQ = 0 mA				

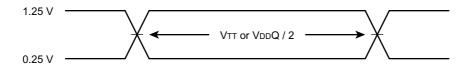
Output Voltage on Controlled Impedance Push-Pull Output Buffer Mode (VZQ = $IZQ \times RQ$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Low level output voltage	Vol	$I_{OL} = (V_{DD}Q/2) / (RQ/5) \pm 15\%$	Vss		V _{DD} Q/2	٧
		@Vol = VddQ / 2 (175 Ω < RQ < 350 Ω)				
High level output voltage	Vон	$I_{OH} = (V_{DD}Q/2) / (RQ/5) \pm 15\%$	V _{DD} Q/2		$V_{DD}Q$	V
		@V _{OH} = V _{DD} Q / 2 (175 Ω < RQ < 350 Ω)				

Output Voltage on Push-Pull Output Buffer Mode (VZQ = VDD)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Low level output voltage	Vol	I _{OL} = +4 mA	_		0.3	V
High level output voltage	Vон	Iон = -4 mA	V _{DD} Q - 0.3		1	V

AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)


AC Characteristics Test Conditions (T_A Note = 0 to 70 °C, V_{DD} = 2.375 to 2.625 V, V_{DD}Q = 1.5 V)

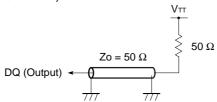
Parameter	Symbol	Conditions	Unit
High level input voltage	ViH	1.25	٧
Low level input voltage	VIL	0.25	V
Input reference voltage	V _{REF}	0.75	V
Input rise time	TR	0.5	ns
Input fall time	TF	0.5	ns
Input and output timing reference level		Cross point	

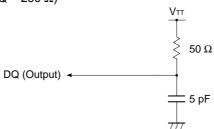
Note T_A = Operating ambient temperature

Remark Parameter tested with RQ = 250 Ω and V_{DD}Q = 1.5 V.

Input waveform (rise and fall time = 0.5 ns (20 to 80%))

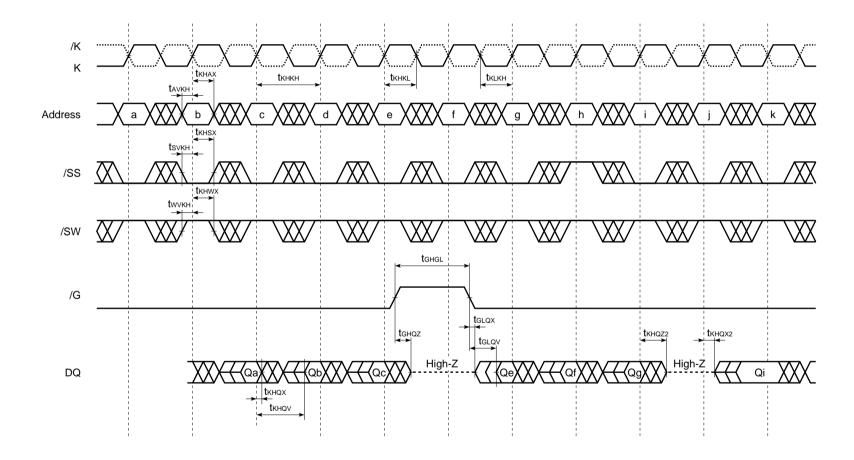
Output waveform



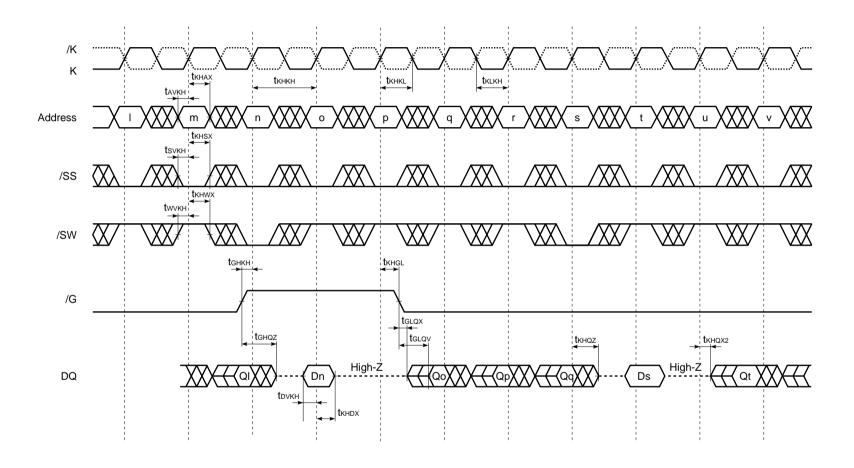

Read and Write Cycle

F	Parameter	Symbol	MIN.	MAX.	Unit	Note
Clock cycle time)	t кнкн	4.0	_	ns	
Clock phase tim	ie	tkhkl/tklkh	1.5	_	ns	
Setup times	Address	t avkh	0.5	_	ns	
	Write data	t dvkh				
	Write enable	t wvkH				
	Chip select	tsvкн				
Hold times	Address	t khax	0.5	_	ns	
	Write data	t khdx				
	Write enable	t kHWX				
	Chip select	tкнsх				
Clock access time		t khqv	-	2.0	ns	1
K high to Q change		t кнах	0.5	_	ns	2
/G low to Q valid	d	t GLQV	-	2.0	ns	1
/G low to Q cha	nge	t GLQX	0.5	_	ns	2
/G high to Q Hig	jh-Z	tgнqz	1.0	2.0	ns	2
K high to Q High	n-Z (/SW)	t кнqz	1.0	2.5	ns	2
K high to Q High	n-Z (/SS)	tkHQZ2	1.0	2.5	ns	2
K high to Q Low	ı-Z	tkHQX2	0.7	_	ns	
/G high Pulse width		t ghgL	4.0	_	ns	3
/G high to K high		t ghkh	1.0	_	ns	3
K high to /G low		t khgl	2.5	_	ns	3
Sleep mode recovery		tzzr	2	_	Cycle	4
Sleep mode ena	able	tzze	_	2	Cycle	4

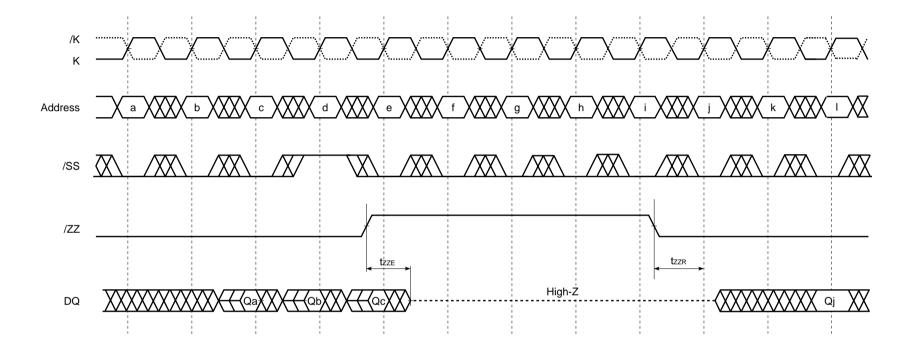
Notes 1. See figure. (V_{TT} = 0.75 V, RQ = 250 Ω)



2. See figure. (V_{TT} = 0.75 V, RQ = 250 Ω)


- 3. Controlled impedance push-pull output buffer mode only.
- 4. /SS must be 'high' before sleep mode entry.

Read Operation



Data Sheet M16379EJ4V0DS

Write Operation

Sleep Mode

JTAG Specifications

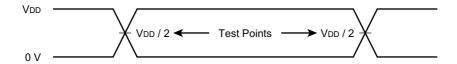
The μ PD44323362 supports a limited set of JTAG functions as in IEEE standard 1149.1.

Test Access Port (TAP) Pins

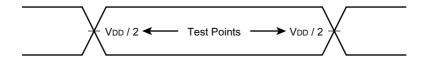
Pin name	Pin assignments	Description
тск	4 U	Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.
TMS	2 U	Test Mode Select. This is the command input for the TAP controller state machine.
TDI	3 U	Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP controller state machine and the instruction that is currently loaded in the TAP instruction.
TDO	5 U	Test Data Output. Output changes in response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.

Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.

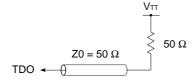
JTAG DC Characteristics (T_j = 5 to 110 °C)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
JTAG input high voltage	VIH		2.2		V _{DD} + 0.3 (3.0 V MAX)	٧	
JTAG input low voltage	VIL		-0.3		+0.5	٧	
JTAG output high voltage	Vон	Iон = –8 mA	2.4		_	V	
JTAG output low voltage	Vol	IoL = 8 mA	_		0.4	٧	

14

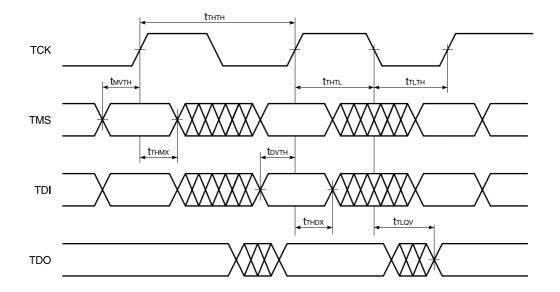


JTAG AC Test Conditions (Tj = 5 to 110 °C)


Input waveform (rise / fall time = 1 ns (20 to 80%))

Output waveform

Output load ($V_{TT} = 1.5 \text{ V}$)



JTAG AC Characteristics (Tj = 5 to 110 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Clock cycle time (TCK)	tтнтн		100		ı	ns	
Clock phase time (TCK)	tтнть / tтьтн		40		-	ns	
Setup time (TMS / TDI)	t мvтн / t dvтн		10		-	ns	
Hold time (TMS / TDI)	tтнмх / tтндх		10		_	ns	
TCK low to TDO valid (TDO)	t τιαν		_		20	ns	

JTAG Timing Diagram

Scan Register Definition (1)

Register name	Description
Instruction register	The instruction register holds the instructions that are executed by the TAP controller when it is moved into the run-test/idle or the various data register state. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.
Bypass register	The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible.
ID register	The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.
Boundary register	The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the boundary register. The Scan Exit Order tables describe which device bump connects to each boundary register location. The first column defines the bit's position in the boundary register. The shift register bit nearest TDO (i.e., first to be shifted out) is defined as bit 1. The second column is the name of the input or I/O at the bump and the third column is the bump number

Scan Register Definition (2)

Register name	Bit size	Unit
Instruction register	3	bit
Bypass register	1	bit
ID register	32	bit
Boundary register	70	bit

ID Register Definition

ID [31:28] vendor revision no.	ID [27:12] part no.	ID [11:1] vendor ID no.	ID [0] fix bit
XXXX	0000 0000 0011 1100	00000010000	1

17

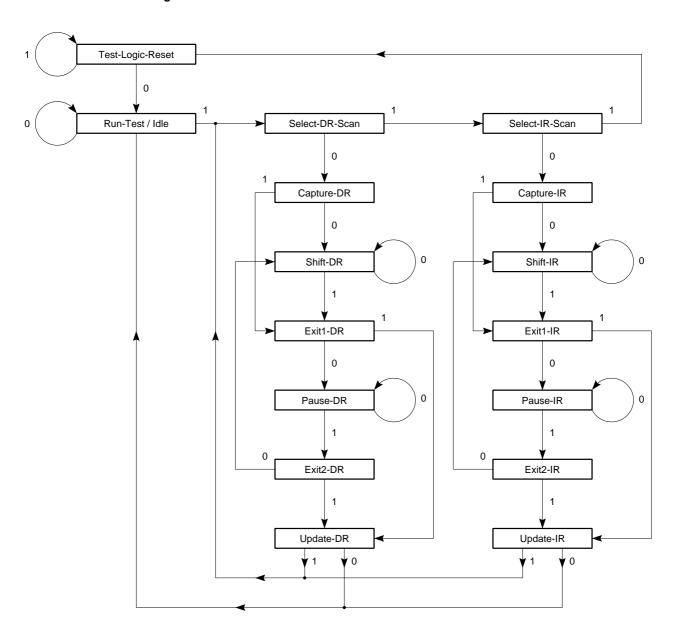
SCAN Exit Order

Bit no.	Signal name	Bump ID
1	M2	5R
'	IVIZ	311
	0.14	40
2	SA1	4P
3	SA8	4T
4	SA4	6R
5	SA7	5T
6	ZZ	7T
7	DQa9	6P
8	DQa8	7P
9	DQa7	6N
10	DQa6	7N
11	DQa5	6M
12	DQa4	6L
13	DQa3	7L
14	DQa2	6K
15	DQa1	7K
16	/SBa	5L
17	/K	4L
18	K	4K
19	/G	4F
20	/SBb	5G
21	DQb1	7H
22	DQb2	6H
23	DQb3	7G
24	DQb4	6G
25	DQb5	6F
26	DQb6	7E
27	DQb7	6E
28	DQb8	7D
29	DQb9	6D
30	SA2	6A
31	SA3	6C
32	SA6	5C
33	SA5	5A
34	SA17	6B
35	SA15	5B

Bit no.	Signal name	Bump ID
36	SA16	3B
37	SA18	2B
38	SA9	3A
39	SA10	3C
40	SA13	2C
41	SA12	2A
42	DQc9	2D
43	DQc8	1D
44	DQc7	2E
45	DQc6	1E
46	DQc5	2F
47	DQc4	2G
48	DQc3	1G
49	DQc2	2H
50	DQc1	1H
51	/SBc	3G
52	ZQ	4D
53	/SS	4E
54	SA19	4B
55	NC	4H
56	/SW	4M
57	/SBd 3L	
58	DQd1 1K	
59	DQd2	2K
60	DQd3	1L
61	DQd4	2L
62	DQd5	2M
63	DQd6	1N
64	DQd7	2N
65	DQd8	1P
66	DQd9	2P
67	SA11	3T
68	SA14	2R
69	SA0	4N
70	M1	3R

JTAG Instructions

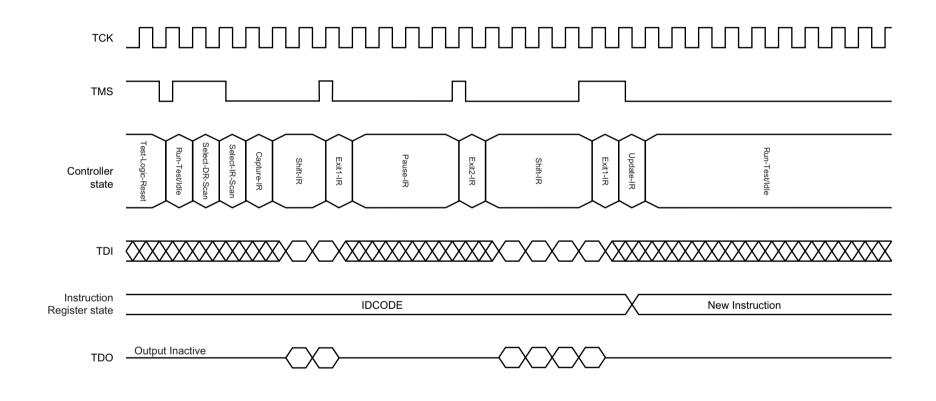
Instructions	Description		
EXTEST	EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register, whatever length it may be in the device, is loaded with all logic 0s. EXTEST is not implemented in this device. Therefore this device is not 1149.1 compliant. Nevertheless, this RAMs TAP does respond to an all zeros instruction, as follows. With the EXTEST (000) instruction loaded in the instruction register the RAM responds just as it does in response to the SAMPLE instruction, except the RAM output are forced to high impedance any time the instruction is loaded.		
IDCODE	The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the test-logic-reset state.		
BYPASS	The BYPASS instruction is loaded in the instruction register when the bypass register is placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.		
SAMPLE	Sample is a Standard 1149.1 mandatory public instruction. When the sample instruction is loaded in the instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input and I/O buffers into the boundary scan register. Because the RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable input will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold time (tcs plus tch). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins. This functionality is not Standard 1149.1 compliant.		
SAMPLE-Z	If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high impedance) and the boundary register is connected between TDI and TDO when the TAP controller is moved to the shift-DR state.		


JTAG Instruction Cording

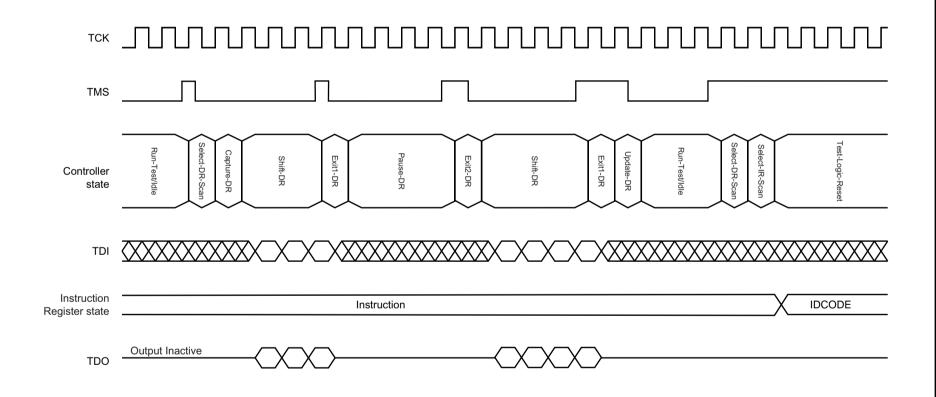
IR2	IR1	IR0	Instruction	Note
0	0	0	EXTEST	1
0	0	1	IDCODE	
0	1	0	SAMPLE-Z	1
0	1	1	BYPASS	
1	0	0	SAMPLE	
1	0	1	BYPASS	
1	1	0	BYPASS	
1	1	1	BYPASS	

Note 1. TRISTATE all data drivers and CAPTURE the pad values into a SERIAL SCAN LATCH.

TAP Controller State Diagram

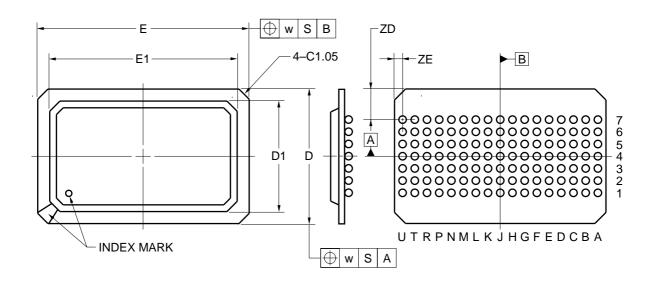

Disabling The Test Access Port

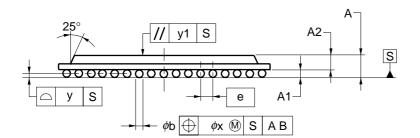
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal operation of the device, TCK must be tied to Vss to preclude mid level inputs.


TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be tied to V_{DD} through a 1k Ω resistor.

TDO should be left unconnected.

Test Logic Operation (Instruction Scan)


Test Logic (Data Scan)



Package Drawing

119-PIN PLASTIC BGA (14x22)

	(UNIT:mm)		
ITEM	DIMENSIONS		
D	14.00±0.20		
E	22.00±0.20		
D1	12.00		
E1	19.50		
w	0.30		
е	1.27		
Α	2.06±0.30		
A1	0.60±0.10		
A2	1.46		
b	0.75±0.15		
х	0.15		
у	0.15		
y1	0.35		
ZD	3.19		
ZE	0.84		
	P119F1-127-FJ1		

Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD44323362.

Type of Surface Mount Device

 μ PD44323362F1-FJ1: 119-pin plastic BGA

Revision History

Edition/	Page		Type of	Location	Description
Date	This	Previous	revision		(Previous edition $ ightarrow$ This edition)
	edition	edition			
4th edition/	Throughout	Throughout	Modification	_	Preliminary Data Sheet \rightarrow Data Sheet
May 2004	Throughout	Throughout	Deletion	Ordering Information	μPD44323182F1-C40-FJ1
					μPD44323182F1-C50-FJ1
					μPD44323362F1-C50-FJ1

[MEMO]

NOTES FOR CMOS DEVICES —

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

27

- The information in this document is current as of May, 2004. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
 property rights of third parties by or arising from the use of NEC Electronics products listed in this document
 or any other liability arising from the use of such products. No license, express, implied or otherwise, is
 granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).